Disciplina: Matemática 0 Curtidas
O acréscimo de tecnologias no sistema produtivo industrial - ENEM 2015
Atualizado em 13/05/2024
O acréscimo de tecnologias no sistema produtivo industrial tem por objetivo reduzir custos e aumentar a produtividade. No primeiro ano de funcionamento, uma indústria fabricou 8 000 unidades de um determinado produto. No ano seguinte, investiu em tecnologia adquirindo novas máquinas e aumentou a produção em 50%. Estima-se que esse aumento percentual se repita nos próximos anos, garantindo um crescimento anual de 50%. Considere P a quantidade anual de produtos fabricados no ano t de funcionamento da indústria.
Se a estimativa for alcançada, qual é a expressão que determina o número de unidades produzidas P em função de t, para t ≥ 1?
-
P(t) = 0,5 · t-1 + 8 000
-
P(t) = 50 · t-1 + 8 000
-
P(t) = 4 000 · t-1 + 8 000
-
P(t) = 8 000 · (0,5)t - 1
-
P(t) = 8 000 · (1,5)t - 1
Solução
Alternativa Correta: E) P(t) = 8 000 · (1,5)t - 1
O número de unidades produzidas P, em função de t, corresponde, em cada ano, aos termos de uma progressão geométrica de primeiro termo a1 = 8 000 unidades e razão q = 1,5. Logo, a expressão que determina esse número de unidades é p = 8 000 . (1,5)t–1.
Créditos da Resolução: Curso Objetivo
Área do Conhecimento: Matemática e suas tecnologias
Ano da Prova: 2015
Nível de Dificuldade da Questão: Médio
Assuntos: Progressão Geométrica
Vídeo Sugerido: YouTube